Propriétés d'approximation et de convergence des applications CR formelles

Translated title of the contribution: Approximation and convergence properties of formal CR-maps

Francine Meylan, Nordine Mir, Dmitri Zaitsev

Research output: Contribution to journalArticle

Abstract

Let M ⊂ ℂ N be a minimal real-analytic CR-submanifold and M′ ⊂ ℂ N′ a real-algebraic subset through points p ∈ M and p′ ∈ M′ respectively. We show that that any formal (holomorphic) mapping f: (ℂ N, p) → (ℂ N′ p′), sending M into M′, can be approximated up to any given order at p by a convergent map sending M into M′. If M is furthermore generic, we also show that any such map f, that is not convergent, must send (in an appropriate sense) M into the set E′ ⊂ M′ of points of D'Angelo infinite type. Therefore, if M′ does not contain any nontrivial complex-analytic subvariety through p′, any formal map f sending M into M′ is necessarily convergent.

Original languageFrench
Pages (from-to)671-676
Number of pages6
JournalComptes Rendus Mathematique
Volume335
Issue number8
DOIs
Publication statusPublished - 15 Oct 2002
Externally publishedYes

Fingerprint

Approximation Property
Convergence Properties
CR-submanifold
Holomorphic Mappings
Subset

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Propriétés d'approximation et de convergence des applications CR formelles. / Meylan, Francine; Mir, Nordine; Zaitsev, Dmitri.

In: Comptes Rendus Mathematique, Vol. 335, No. 8, 15.10.2002, p. 671-676.

Research output: Contribution to journalArticle

Meylan, Francine ; Mir, Nordine ; Zaitsev, Dmitri. / Propriétés d'approximation et de convergence des applications CR formelles. In: Comptes Rendus Mathematique. 2002 ; Vol. 335, No. 8. pp. 671-676.
@article{c5dbc87dc7ab4be58201bdb8d6b8b3c4,
title = "Propri{\'e}t{\'e}s d'approximation et de convergence des applications CR formelles",
abstract = "Let M ⊂ ℂ N be a minimal real-analytic CR-submanifold and M′ ⊂ ℂ N′ a real-algebraic subset through points p ∈ M and p′ ∈ M′ respectively. We show that that any formal (holomorphic) mapping f: (ℂ N, p) → (ℂ N′ p′), sending M into M′, can be approximated up to any given order at p by a convergent map sending M into M′. If M is furthermore generic, we also show that any such map f, that is not convergent, must send (in an appropriate sense) M into the set E′ ⊂ M′ of points of D'Angelo infinite type. Therefore, if M′ does not contain any nontrivial complex-analytic subvariety through p′, any formal map f sending M into M′ is necessarily convergent.",
author = "Francine Meylan and Nordine Mir and Dmitri Zaitsev",
year = "2002",
month = "10",
day = "15",
doi = "10.1016/S1631-073X(02)02552-9",
language = "French",
volume = "335",
pages = "671--676",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "8",

}

TY - JOUR

T1 - Propriétés d'approximation et de convergence des applications CR formelles

AU - Meylan, Francine

AU - Mir, Nordine

AU - Zaitsev, Dmitri

PY - 2002/10/15

Y1 - 2002/10/15

N2 - Let M ⊂ ℂ N be a minimal real-analytic CR-submanifold and M′ ⊂ ℂ N′ a real-algebraic subset through points p ∈ M and p′ ∈ M′ respectively. We show that that any formal (holomorphic) mapping f: (ℂ N, p) → (ℂ N′ p′), sending M into M′, can be approximated up to any given order at p by a convergent map sending M into M′. If M is furthermore generic, we also show that any such map f, that is not convergent, must send (in an appropriate sense) M into the set E′ ⊂ M′ of points of D'Angelo infinite type. Therefore, if M′ does not contain any nontrivial complex-analytic subvariety through p′, any formal map f sending M into M′ is necessarily convergent.

AB - Let M ⊂ ℂ N be a minimal real-analytic CR-submanifold and M′ ⊂ ℂ N′ a real-algebraic subset through points p ∈ M and p′ ∈ M′ respectively. We show that that any formal (holomorphic) mapping f: (ℂ N, p) → (ℂ N′ p′), sending M into M′, can be approximated up to any given order at p by a convergent map sending M into M′. If M is furthermore generic, we also show that any such map f, that is not convergent, must send (in an appropriate sense) M into the set E′ ⊂ M′ of points of D'Angelo infinite type. Therefore, if M′ does not contain any nontrivial complex-analytic subvariety through p′, any formal map f sending M into M′ is necessarily convergent.

UR - http://www.scopus.com/inward/record.url?scp=0037715287&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037715287&partnerID=8YFLogxK

U2 - 10.1016/S1631-073X(02)02552-9

DO - 10.1016/S1631-073X(02)02552-9

M3 - Article

VL - 335

SP - 671

EP - 676

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 8

ER -