Alpha localized radiolysis and corrosion mechanisms at the iron/water interface: Role of molecular species

Johan Vandenborre, Francis Crumière, Guillaume Blain, Rachid Essehli, Bernard Humbert, Massoud Fattahi

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This paper is devoted to the iron corrosion phenomena induced by the α (4He2+) water radiolysis species studied in conjunction with the production/consumption of H2 at the solid/solution interface. On one hand, the solid surface is characterized during the 4He2+ ions irradiation by in situ Raman spectroscopy; on another hand, the H2 gas produced by the water radiolysis is monitored by ex situ gas measurements. The 4He2+ ions irradiation experiments are provided either by the CEMHTI (E = 5.0 MeV) either by the ARRONAX (E = 64.7 MeV) cyclotron facilities. The iron corrosion occurs only under irradiation and can be slowed down by H2 reductive atmosphere. Pure iron and carbon steel solids are studied in order to show two distinct behaviors of these surfaces vs. the 4He2+ ions water irradiation: the corrosion products identified are the magnetite phase (Fe(II)Fe(III)2O4) correlated to an H2 consumption for pure iron and the lepidocrocite phase (γ-Fe(III)OOH) correlated to an H2 production for carbon steel sample. This paper underlined the correlation between the iron corrosion products formation onto the solid surface and the H2 production/consumption mechanisms. H2O2 species is considered as the single water radiolytic species involved into the corrosion reaction at the solid surface with an essential role in the oxidation reaction of the iron surface. We propose to bring some light to these mechanisms, in particular the H2 and H 2O2 roles, by the in situ Raman spectroscopy during and after the 4He2+ ions beam irradiation. This in situ experiment avoids the evolution of the solid surface, in particular phases which are reactive to the oxidation processing.

Original languageEnglish
Pages (from-to)124-131
Number of pages8
JournalJournal of Nuclear Materials
Volume433
Issue number1-3
DOIs
Publication statusPublished - 2013
Externally publishedYes

Fingerprint

Radiolysis
radiolysis
corrosion
Iron
Corrosion
iron
solid surfaces
Water
water
carbon steels
Irradiation
Ion bombardment
ion irradiation
irradiation
Carbon steel
Raman spectroscopy
Ferrosoferric Oxide
Gas fuel measurement
Oxidation
oxidation

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Materials Science(all)
  • Nuclear Energy and Engineering

Cite this

Alpha localized radiolysis and corrosion mechanisms at the iron/water interface : Role of molecular species. / Vandenborre, Johan; Crumière, Francis; Blain, Guillaume; Essehli, Rachid; Humbert, Bernard; Fattahi, Massoud.

In: Journal of Nuclear Materials, Vol. 433, No. 1-3, 2013, p. 124-131.

Research output: Contribution to journalArticle

Vandenborre, Johan ; Crumière, Francis ; Blain, Guillaume ; Essehli, Rachid ; Humbert, Bernard ; Fattahi, Massoud. / Alpha localized radiolysis and corrosion mechanisms at the iron/water interface : Role of molecular species. In: Journal of Nuclear Materials. 2013 ; Vol. 433, No. 1-3. pp. 124-131.
@article{56aa81de6b1d494e8b037a9a9b594a38,
title = "Alpha localized radiolysis and corrosion mechanisms at the iron/water interface: Role of molecular species",
abstract = "This paper is devoted to the iron corrosion phenomena induced by the α (4He2+) water radiolysis species studied in conjunction with the production/consumption of H2 at the solid/solution interface. On one hand, the solid surface is characterized during the 4He2+ ions irradiation by in situ Raman spectroscopy; on another hand, the H2 gas produced by the water radiolysis is monitored by ex situ gas measurements. The 4He2+ ions irradiation experiments are provided either by the CEMHTI (E = 5.0 MeV) either by the ARRONAX (E = 64.7 MeV) cyclotron facilities. The iron corrosion occurs only under irradiation and can be slowed down by H2 reductive atmosphere. Pure iron and carbon steel solids are studied in order to show two distinct behaviors of these surfaces vs. the 4He2+ ions water irradiation: the corrosion products identified are the magnetite phase (Fe(II)Fe(III)2O4) correlated to an H2 consumption for pure iron and the lepidocrocite phase (γ-Fe(III)OOH) correlated to an H2 production for carbon steel sample. This paper underlined the correlation between the iron corrosion products formation onto the solid surface and the H2 production/consumption mechanisms. H2O2 species is considered as the single water radiolytic species involved into the corrosion reaction at the solid surface with an essential role in the oxidation reaction of the iron surface. We propose to bring some light to these mechanisms, in particular the H2 and H 2O2 roles, by the in situ Raman spectroscopy during and after the 4He2+ ions beam irradiation. This in situ experiment avoids the evolution of the solid surface, in particular phases which are reactive to the oxidation processing.",
author = "Johan Vandenborre and Francis Crumi{\`e}re and Guillaume Blain and Rachid Essehli and Bernard Humbert and Massoud Fattahi",
year = "2013",
doi = "10.1016/j.jnucmat.2012.09.034",
language = "English",
volume = "433",
pages = "124--131",
journal = "Journal of Nuclear Materials",
issn = "0022-3115",
publisher = "Elsevier",
number = "1-3",

}

TY - JOUR

T1 - Alpha localized radiolysis and corrosion mechanisms at the iron/water interface

T2 - Role of molecular species

AU - Vandenborre, Johan

AU - Crumière, Francis

AU - Blain, Guillaume

AU - Essehli, Rachid

AU - Humbert, Bernard

AU - Fattahi, Massoud

PY - 2013

Y1 - 2013

N2 - This paper is devoted to the iron corrosion phenomena induced by the α (4He2+) water radiolysis species studied in conjunction with the production/consumption of H2 at the solid/solution interface. On one hand, the solid surface is characterized during the 4He2+ ions irradiation by in situ Raman spectroscopy; on another hand, the H2 gas produced by the water radiolysis is monitored by ex situ gas measurements. The 4He2+ ions irradiation experiments are provided either by the CEMHTI (E = 5.0 MeV) either by the ARRONAX (E = 64.7 MeV) cyclotron facilities. The iron corrosion occurs only under irradiation and can be slowed down by H2 reductive atmosphere. Pure iron and carbon steel solids are studied in order to show two distinct behaviors of these surfaces vs. the 4He2+ ions water irradiation: the corrosion products identified are the magnetite phase (Fe(II)Fe(III)2O4) correlated to an H2 consumption for pure iron and the lepidocrocite phase (γ-Fe(III)OOH) correlated to an H2 production for carbon steel sample. This paper underlined the correlation between the iron corrosion products formation onto the solid surface and the H2 production/consumption mechanisms. H2O2 species is considered as the single water radiolytic species involved into the corrosion reaction at the solid surface with an essential role in the oxidation reaction of the iron surface. We propose to bring some light to these mechanisms, in particular the H2 and H 2O2 roles, by the in situ Raman spectroscopy during and after the 4He2+ ions beam irradiation. This in situ experiment avoids the evolution of the solid surface, in particular phases which are reactive to the oxidation processing.

AB - This paper is devoted to the iron corrosion phenomena induced by the α (4He2+) water radiolysis species studied in conjunction with the production/consumption of H2 at the solid/solution interface. On one hand, the solid surface is characterized during the 4He2+ ions irradiation by in situ Raman spectroscopy; on another hand, the H2 gas produced by the water radiolysis is monitored by ex situ gas measurements. The 4He2+ ions irradiation experiments are provided either by the CEMHTI (E = 5.0 MeV) either by the ARRONAX (E = 64.7 MeV) cyclotron facilities. The iron corrosion occurs only under irradiation and can be slowed down by H2 reductive atmosphere. Pure iron and carbon steel solids are studied in order to show two distinct behaviors of these surfaces vs. the 4He2+ ions water irradiation: the corrosion products identified are the magnetite phase (Fe(II)Fe(III)2O4) correlated to an H2 consumption for pure iron and the lepidocrocite phase (γ-Fe(III)OOH) correlated to an H2 production for carbon steel sample. This paper underlined the correlation between the iron corrosion products formation onto the solid surface and the H2 production/consumption mechanisms. H2O2 species is considered as the single water radiolytic species involved into the corrosion reaction at the solid surface with an essential role in the oxidation reaction of the iron surface. We propose to bring some light to these mechanisms, in particular the H2 and H 2O2 roles, by the in situ Raman spectroscopy during and after the 4He2+ ions beam irradiation. This in situ experiment avoids the evolution of the solid surface, in particular phases which are reactive to the oxidation processing.

UR - http://www.scopus.com/inward/record.url?scp=84867900512&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84867900512&partnerID=8YFLogxK

U2 - 10.1016/j.jnucmat.2012.09.034

DO - 10.1016/j.jnucmat.2012.09.034

M3 - Article

AN - SCOPUS:84867900512

VL - 433

SP - 124

EP - 131

JO - Journal of Nuclear Materials

JF - Journal of Nuclear Materials

SN - 0022-3115

IS - 1-3

ER -