A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface

Luca Artiglia, Jacinta Edebeli, Fabrizio Orlando, Shuzhen Chen, Ming Tao Lee, Pablo Corral Arroyo, Anina Gilgen, Thorsten Bartels-Rausch, Armin Kleibert, Mario Vazdar, Marcelo Carignano, Joseph S. Francisco, Paul B. Shepson, Ivan Gladich, Markus Ammann

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Oxidation of bromide in aqueous environments initiates the formation of molecular halogen compounds, which is important for the global tropospheric ozone budget. In the aqueous bulk, oxidation of bromide by ozone involves a [Br•OOO-] complex as intermediate. Here we report liquid jet X-ray photoelectron spectroscopy measurements that provide direct experimental evidence for the ozonide and establish its propensity for the solution-vapour interface. Theoretical calculations support these findings, showing that water stabilizes the ozonide and lowers the energy of the transition state at neutral pH. Kinetic experiments confirm the dominance of the heterogeneous oxidation route established by this precursor at low, atmospherically relevant ozone concentrations. Taken together, our results provide a strong case of different reaction kinetics and mechanisms of reactions occurring at the aqueous phase-vapour interface compared with the bulk aqueous phase.

Original languageEnglish
Article number700
JournalNature Communications
Volume8
Issue number1
DOIs
Publication statusPublished - 1 Dec 2017

    Fingerprint

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this

Artiglia, L., Edebeli, J., Orlando, F., Chen, S., Lee, M. T., Corral Arroyo, P., Gilgen, A., Bartels-Rausch, T., Kleibert, A., Vazdar, M., Carignano, M., Francisco, J. S., Shepson, P. B., Gladich, I., & Ammann, M. (2017). A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface. Nature Communications, 8(1), [700]. https://doi.org/10.1038/s41467-017-00823-x