A Device-Level Vacuum-Packaging Scheme for Microbolometers on Rigid and Flexible Substrates

Aamer Mahmoud, Zeynep Celik-Butler

Research output: Contribution to journalArticle

10 Citations (Scopus)


This paper reports on the design, fabrication, and characterization of device-level vacuum-packaged microbolometers on rigid Si wafers and flexible polyimide substrates. Semiconducting yttrium barium copper oxide (commonly referred to as YBCO) serves as the bolometric material. Operating micromachined bolometers in vacuum reduces the thermal conductance Gth from the detector to the substrate. If flexibility of the substrate is not to be sacrificed, then the vacuum packaging needs to be done at the device level. Here, the microbolometers are fabricated on a silicon nitride support membrane, isolated from the substrate using surface micromachining. Suitable materials as well as various dimensions in the vacuum cavity are determined using finite-element method (FEM)-based CoventorWARE. A vacuum cavity made of A12O3 has been designed. The thermal conductance Gth of bolometers with the geometry implemented in this work is the same for devices on rigid and flexible substrates. The theoretical value of Gthwas calculated to be 4.0 x 10–6 W/K for devices operating in vacuum and 1.4 x 10–4 W/K for devices operating at atmospheric pressure. Device-level vacuum-packaged microbolometers on both rigid Si and flexible polyimide substrates have been fabricated and characterized for optical and electrical properties. A low thermal conductance of 1.1 ×10 -6 W/K has been measured six months after fabrication, which implies an intact vacuum cavity.

Original languageEnglish
Pages (from-to)1012-1019
Number of pages8
JournalIEEE Sensors Journal
Issue number7
Publication statusPublished - 7 Jul 2007
Externally publishedYes


  • Bolometer
  • flexible substrates
  • packaging
  • smart skin

ASJC Scopus subject areas

  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A Device-Level Vacuum-Packaging Scheme for Microbolometers on Rigid and Flexible Substrates'. Together they form a unique fingerprint.

  • Cite this