A Comparison of high capacity x Li2 MnO3 (1-x) LiMO2 (M=Ni,Co,Mn) cathodes in lithium-ion cells with Li4 Ti5 O12 - And carbon-encapsulated anatase TiO2 anodes

S. H. Kang, V. G. Pol, I. Belharouak, M. M. Thackeray

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

The electrochemical performance of high capacity x Li2 MnO 3 · (1-x) LiMO2 (M=Ni,Co,Mn) cathodes was evaluated in a lithium-ion cell configuration against Li4 Ti5 O12 - and carbon-encapsulated anatase, TiO2 -C, anodes. The electrode composition 0.5 Li2 MnO3 0.5 LiNi0.44 Mn0.31 Co0.25 O 2 that provides a rechargeable capacity of 250 mAh/g was selected for the study. Li4 Ti5 O12 /0.5 Li2 MnO3 ·0.5 LiNi0.44 Mn0.31 Co 0.25 O2 cells operate with excellent reversibility, offering a superior energy density to Li4 Ti5 O 12/ Li1+x Mn2-x O4 (spinel/spinel) cells that are being developed for powering hybrid and plug-in hybrid (10 mile) vehicles. Carbon encapsulation of anatase TiO2 did not improve the stability or cycle life of Lix TiO2 electrodes for x> 0.5; TiO2 -C/0.5 Li2 MnO3 · 0.5 LiNi0.44 Mn0.31 Co0.25 O2 cells steadily lose capacity on electrochemical cycling.

Original languageEnglish
JournalJournal of the Electrochemical Society
Volume157
Issue number3
DOIs
Publication statusPublished - 16 Feb 2010
Externally publishedYes

Fingerprint

Lithium
anatase
Titanium dioxide
Anodes
Cathodes
anodes
Carbon
lithium
cathodes
Ions
Electrodes
carbon
cells
Encapsulation
spinel
Life cycle
ions
cycles
electrodes
plugs

ASJC Scopus subject areas

  • Electrochemistry
  • Electronic, Optical and Magnetic Materials
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Renewable Energy, Sustainability and the Environment
  • Condensed Matter Physics

Cite this

@article{0b5e0b16e79246eb889245bdd8d2a588,
title = "A Comparison of high capacity x Li2 MnO3 (1-x) LiMO2 (M=Ni,Co,Mn) cathodes in lithium-ion cells with Li4 Ti5 O12 - And carbon-encapsulated anatase TiO2 anodes",
abstract = "The electrochemical performance of high capacity x Li2 MnO 3 · (1-x) LiMO2 (M=Ni,Co,Mn) cathodes was evaluated in a lithium-ion cell configuration against Li4 Ti5 O12 - and carbon-encapsulated anatase, TiO2 -C, anodes. The electrode composition 0.5 Li2 MnO3 0.5 LiNi0.44 Mn0.31 Co0.25 O 2 that provides a rechargeable capacity of 250 mAh/g was selected for the study. Li4 Ti5 O12 /0.5 Li2 MnO3 ·0.5 LiNi0.44 Mn0.31 Co 0.25 O2 cells operate with excellent reversibility, offering a superior energy density to Li4 Ti5 O 12/ Li1+x Mn2-x O4 (spinel/spinel) cells that are being developed for powering hybrid and plug-in hybrid (10 mile) vehicles. Carbon encapsulation of anatase TiO2 did not improve the stability or cycle life of Lix TiO2 electrodes for x> 0.5; TiO2 -C/0.5 Li2 MnO3 · 0.5 LiNi0.44 Mn0.31 Co0.25 O2 cells steadily lose capacity on electrochemical cycling.",
author = "Kang, {S. H.} and Pol, {V. G.} and I. Belharouak and Thackeray, {M. M.}",
year = "2010",
month = "2",
day = "16",
doi = "10.1149/1.3274205",
language = "English",
volume = "157",
journal = "Journal of the Electrochemical Society",
issn = "0013-4651",
publisher = "Electrochemical Society, Inc.",
number = "3",

}

TY - JOUR

T1 - A Comparison of high capacity x Li2 MnO3 (1-x) LiMO2 (M=Ni,Co,Mn) cathodes in lithium-ion cells with Li4 Ti5 O12 - And carbon-encapsulated anatase TiO2 anodes

AU - Kang, S. H.

AU - Pol, V. G.

AU - Belharouak, I.

AU - Thackeray, M. M.

PY - 2010/2/16

Y1 - 2010/2/16

N2 - The electrochemical performance of high capacity x Li2 MnO 3 · (1-x) LiMO2 (M=Ni,Co,Mn) cathodes was evaluated in a lithium-ion cell configuration against Li4 Ti5 O12 - and carbon-encapsulated anatase, TiO2 -C, anodes. The electrode composition 0.5 Li2 MnO3 0.5 LiNi0.44 Mn0.31 Co0.25 O 2 that provides a rechargeable capacity of 250 mAh/g was selected for the study. Li4 Ti5 O12 /0.5 Li2 MnO3 ·0.5 LiNi0.44 Mn0.31 Co 0.25 O2 cells operate with excellent reversibility, offering a superior energy density to Li4 Ti5 O 12/ Li1+x Mn2-x O4 (spinel/spinel) cells that are being developed for powering hybrid and plug-in hybrid (10 mile) vehicles. Carbon encapsulation of anatase TiO2 did not improve the stability or cycle life of Lix TiO2 electrodes for x> 0.5; TiO2 -C/0.5 Li2 MnO3 · 0.5 LiNi0.44 Mn0.31 Co0.25 O2 cells steadily lose capacity on electrochemical cycling.

AB - The electrochemical performance of high capacity x Li2 MnO 3 · (1-x) LiMO2 (M=Ni,Co,Mn) cathodes was evaluated in a lithium-ion cell configuration against Li4 Ti5 O12 - and carbon-encapsulated anatase, TiO2 -C, anodes. The electrode composition 0.5 Li2 MnO3 0.5 LiNi0.44 Mn0.31 Co0.25 O 2 that provides a rechargeable capacity of 250 mAh/g was selected for the study. Li4 Ti5 O12 /0.5 Li2 MnO3 ·0.5 LiNi0.44 Mn0.31 Co 0.25 O2 cells operate with excellent reversibility, offering a superior energy density to Li4 Ti5 O 12/ Li1+x Mn2-x O4 (spinel/spinel) cells that are being developed for powering hybrid and plug-in hybrid (10 mile) vehicles. Carbon encapsulation of anatase TiO2 did not improve the stability or cycle life of Lix TiO2 electrodes for x> 0.5; TiO2 -C/0.5 Li2 MnO3 · 0.5 LiNi0.44 Mn0.31 Co0.25 O2 cells steadily lose capacity on electrochemical cycling.

UR - http://www.scopus.com/inward/record.url?scp=76349123414&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=76349123414&partnerID=8YFLogxK

U2 - 10.1149/1.3274205

DO - 10.1149/1.3274205

M3 - Article

VL - 157

JO - Journal of the Electrochemical Society

JF - Journal of the Electrochemical Society

SN - 0013-4651

IS - 3

ER -