If you made any changes in Pure these will be visible here soon.

Fingerprint Fingerprint is based on mining the text of the person's scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 1 Similar Profiles
Genes Engineering & Materials Science
Labels Engineering & Materials Science
Qatar Medicine & Life Sciences
Support vector machines Engineering & Materials Science
Proteins Engineering & Materials Science
Spectral Clustering Mathematics
Clustering algorithms Engineering & Materials Science
Solubility Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2010 2019

  • 302 Citations
  • 11 h-Index
  • 28 Conference contribution
  • 19 Article
  • 2 Chapter
  • 2 Comment/debate

Comparison and assessment of family- and population-based genotype imputation methods in large pedigrees

Ullah, E., Mall, R., Abbas, M. M., Kunji, K., Nato, A. Q., Bensmail, H., Wijsman, E. M. & Saad, M., 1 Jan 2019, In : Genome Research. 29, 1, p. 125-134 10 p.

Research output: Contribution to journalArticle

Pedigree
Genotype
Population
Neurofibromin 2
Genome-Wide Association Study
Physical Chemistry
Physical chemistry
machine learning
physical chemistry
Physics

DeepCrystal: A Deep Learning Framework for Sequence-based Protein Crystallization Prediction

Elbasir, A., Moovarkumudalvan, B., Kunji, K., Kolatkar, P., Bensmail, H. & Mall, R., 21 Jan 2019, Proceedings - 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018. Schmidt, H., Griol, D., Wang, H., Baumbach, J., Zheng, H., Callejas, Z., Hu, X., Dickerson, J. & Zhang, L. (eds.). Institute of Electrical and Electronics Engineers Inc., p. 2747-2749 3 p. 8621202. (Proceedings - 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Crystallization
Learning
Proteins
Diffraction
Crystals
1 Citation (Scopus)

Exploring new approaches towards the formability of mixed-ion perovskites by DFT and machine learning

Park, H., Mall, R., Alharbi, F., Sanvito, S., Tabet, N., Bensmail, H. & El-Mellouhi, F., 1 Jan 2019, In : Physical Chemistry Chemical Physics. 21, 3, p. 1078-1088 11 p.

Research output: Contribution to journalArticle

machine learning
perovskites
Formability
Discrete Fourier transforms
learning
16 Citations (Scopus)

A metabolic function of FGFR3-TACC3 gene fusions in cancer

Frattini, V., Pagnotta, S. M., Tala, Fan, J. J., Russo, M. V., Lee, S. B., Garofano, L., Zhang, J., Shi, P., Lewis, G., Sanson, H., Frederick, V., Castano, A. M., Cerulo, L., Rolland, D. C. M., Mall, R., Mokhtari, K., Elenitoba-Johnson, K. S. J., Sanson, M., Huang, X. & 3 othersCeccarelli, M., Lasorella, A. & Iavarone, A., 11 Jan 2018, In : Nature. 553, 7687, p. 222-227 6 p.

Research output: Contribution to journalArticle

Gene Fusion
Neoplasms
Oncogene Fusion
Respiration
Phosphopeptides