If you made any changes in Pure these will be visible here soon.

Fingerprint Fingerprint is based on mining the text of the person's scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 4 Similar Profiles
Proteomics Medicine & Life Sciences
Proteins Engineering & Materials Science
Genes Engineering & Materials Science
Feature extraction Engineering & Materials Science
Cluster Analysis Medicine & Life Sciences
Qatar Medicine & Life Sciences
Biomarkers Engineering & Materials Science
Learning Medicine & Life Sciences

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 1996 2019

  • 753 Citations
  • 14 h-Index
  • 29 Article
  • 18 Conference contribution
  • 3 Chapter
  • 2 Comment/debate
Physical Chemistry
Physical chemistry
machine learning
physical chemistry
Physics

DeepCrystal: A Deep Learning Framework for Sequence-based Protein Crystallization Prediction

Elbasir, A., Moovarkumudalvan, B., Kunji, K., Kolatkar, P., Bensmail, H. & Mall, R., 21 Jan 2019, Proceedings - 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018. Schmidt, H., Griol, D., Wang, H., Baumbach, J., Zheng, H., Callejas, Z., Hu, X., Dickerson, J. & Zhang, L. (eds.). Institute of Electrical and Electronics Engineers Inc., p. 2747-2749 3 p. 8621202. (Proceedings - 2018 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Crystallization
Learning
Proteins
Diffraction
Crystals
1 Citation (Scopus)

Exploring new approaches towards the formability of mixed-ion perovskites by DFT and machine learning

Park, H., Mall, R., Alharbi, F., Sanvito, S., Tabet, N., Bensmail, H. & El-Mellouhi, F., 1 Jan 2019, In : Physical Chemistry Chemical Physics. 21, 3, p. 1078-1088 11 p.

Research output: Contribution to journalArticle

machine learning
perovskites
Formability
Discrete Fourier transforms
learning
4 Citations (Scopus)

DeepSol: A deep learning framework for sequence-based protein solubility prediction

Khurana, S., Rawi, R., Kunji, K., Chuang, G. Y., Bensmail, H. & Mall, R., 1 Jan 2018, In : Bioinformatics. 34, 15, p. 2605-2613 9 p.

Research output: Contribution to journalArticle

Solubility
Learning
Proteins
Protein
Prediction
Qatar
Translational Medical Research
Medical problems
Type 2 Diabetes Mellitus
Medicine